B|B|C B|B|C!

LIVE el
LESSONS micro:bit

Make your very own micro:monster (basic)

Step 1: Import the code

Download the hex file from our Live Lessons website by clicking on the micro:monster basic hex file link.

Firstly, select ‘My scripts’ on the top navigation on the micro:bit website (www.microbit.co.uk), and
choose ‘Create code’.

Language < My scripts @ Signin

DATA Create Code  About  Gefting Started  Teachers and Parents  Help

BEE ) micro:bit

GET CREATIVE GET CON NECTED,

GET CODING. /

O e

Choose ‘Import Code’ and upload the hex file that you’ve downloaded from the Live Lessons website.

create code with...

Block Editor

rosof

CK JavaScript

Code Kingdoms

ouch Develop
crosoft

Import Code

The code for your micro:monster should now appear in your code window.



Hit ‘run’ to see it in action on the simulator, or plug in your micro:bit, hit ‘compile’ and drag your hex file
onto your micro:bit to try out your micro:monster.

Step 2: Understanding the code

(©) ) &) ©)

my scripts  run main compile undo A

script micro:monster basic
function main ()

[ alive := true

[H sad := false
(H hunger := 0
[Htime:=0

+ basic = show leds( .., 400)
basic — forever do

Ml +iamna oe [Tl ditmamm~an 1

How your micro:monster looks at
the start

This is where you determine how your micro:monster looks when you
first power up.

Here, we’ve set four variables:

dlive this is a variable that calls for a Boolean data type (true or
false)

sad this is a variable that calls for a Boolean data type (true or
false)

hunger this is a variable that calls for an integer data type
(numbers)

time - this is a variable that calls for an integer data type
(numbers)

We've written that the micro:monster is happy when you first start up
(so sad: false), and that it’s not hungry (so hunger: 0). We’ve also said
that the micro:monster is brand new - so it's been alive for zero amount
of time (time: 0). Of course, your micro:monster is also dlive.

Because it's not sad, the micro:monster has a smiley face, so we've
drawn a smiley face using the LEDs.

basic = show animation ( s s s sieis wizee etz iz | 400)
basic — pause(100)
end
input — on button pressed(B) do
basic = show number([H hunger, 150)
end
end function



' A AAANK
my scripts  run main compile undo _irrk‘rk‘k
script micro:monster basic
function main ()

(5 alive := true

[Hsad := false
(M hunger := 0
Htime:= 0

* basic = show leds(.;;., 400)
basic — forever do
[Htime := Htime + 1
if (3 time > 30 then
(3 hunger := [H hunger + 1
., basic — pause(6000)
if (3 hunger > 3 then

(9 sad := true
. basic = show leds( ::,, 400)
else
. basic = show leds(.;:., 400)
end if

else add code here end if
I Lif [H hiinaer > 20 then

What happens as time passes?

This is where you program what happens to your micro:monster.

Here, we’ve introduced a loop that goes on forever. This means that whatever happens
within that loop, it keeps happening as long as the micro:monster is powered up.

When the loop starts, we set the variable time to time + 1, which means the amount of
time that the micro:monster has been alive has gone up by a value of one.

We then introduce a conditional statement. Here we say that IF the variable time is
over 30, then the micro:monster’s hunger goes up by 1. We then add a pause of 6000
milliseconds to extend the time of the loop, so the monster doesn’t get hungry too
quickly!

Another conditional statement is then introduced: IF the variable hunger is more than or

equals to 3, then the monster becomes sad (sad: true), and the monster’s happy face

becomes a sad face. Otherwise (ELSE), the monster is still happy, and a happy face still
¢ shows.




AAAAAAAAAAARL
DR IR Scarch code...

AR
EAAREAMMBAAAARAARAAAAALRL

script micro:monster basic
function main ()

[E alive := true

[ll:l sad := false

[ M hunger := 0

[ [Htime:=0

{

Game over

If you don’t keep your micro:monster happy and feed it regularly, it meets with a sad
demise.

In this block of code, we've introduced a conditional statement that says IF your
monster’s hunger is more than 30, then the alive variable is set to false.

Your micro:monster is now dead. A ‘dead’ face is programmed to appear on the LED
screen, before the screen fades out.

You will have to reset your micro:bit in order to revive your micro:monster.

end if
[else add code here end if

if (5 hunger > 30 then
([ alive := false

. led — fade out(1000)
[else add code here end if
end
input — on button pressed(A) do

[E hunger := [H hunger - 3

é basic — show animation (= FHH ,400)
C‘9 basic — pause(100)
end

input — on button pressed(B) do
C‘gbasic — show number([9 hunger, 150)

end
end function




script micro:monster basic
function main ()

[El alive := true

[Il:l sad := false

[IE hunger := 0

[I'EI time:= 0

<‘9basic — show leds( ..., 400)
basic — forever do

[Eltime = [Htime +1
if Htime > 30 then
(4 hunger := [ hunger + 1

else add code here end if
end

end function



Step 3: Modifying the code

There are lots of things you can do to adapt your micro:monster and make it your own.

In the Live Lesson, we want you to make your own animation for eating and exercising. Click on these lines
of code in the editor and change which LEDs light up to create your own animations:

input — on button pressed(A) do
[Hhunger := (Hhunger - 3
basic = show animation ( :::: e s s e ez iz s - 400)
basic = pause(100)

end

If you like, you can also alter different parts of the code to help make your micro:monster more personal to
you.

You can make it easier or harder to take care of your micro:monster, and can also change the way your
micro:monster looks and acts.

Have a look at the instructions on the next page to see what you can do.



CLOIOI@ RS

e e e e e e e e e e e e i
my scripts  run main compile undo

' So what can you change?

You can do lots of things to make your micro:monster your own. Here are some suggestions...

script micro:monster basic
function main ()

[ alive := true

[ sad := false

[ hunger := 0 Change the variables

Htime := 0 - Instead of your micro:monster being hungry and sad and needing food, why
basic = show leds(::, 400) not make it tired and needing a nap? Just change the variables hunger and

) sad to tiredness and sleepy, or anything else you fancy.
basic — forever do

[Mtime := Mtime + 1 Hint: remember to change them throughout the whole programme so they all
. match up.
if [Htime > 30 then
[H hunger := [H hunger + 1
basic — pause(6000)
if [ hunger > 3 then Change how your micro:monster looks and acts
O sad := true Instead of the traditional smiley and sad face, you can design how your
basic — show leds( ::., 400) monster looks when they’re happy or sad. You can even design the ‘eating’
else animation so it reflects the look of your own micro:monster.
basic — show leds (..., 400) | Hint: if you've changed the variables to tiredness and sleepy, you could
end if change your monster’s sad fact to a sleepy face, and the ‘eating’ animation to

else add code here end if a 'sleeping’ one.

if (9 hunger > 30 then
[T alive := false

Change when your micro:monster dies

led - fade out(1000) You can change how quickly your micro:monster dies by adjusting this
condition. Simply make the number larger to make it live longer, or smaller to

else add code here end if make it a shorter, more exciting game.

end
input — on button pressed(A) do
M hunger := @ hunger - 3

Change how your actions help your micro:monster

basic — pause(100) You can change what actions you do to reduce or increase your
micro:monster’s hunger. Instead of pressing button A, you could trigger

end feeding by shaking it, pressing another button or pressing both buttons at the
input — on button pressed(B) do same time.
basic — show number([3 hunger, 150) For a more sophisticated micro:monster, you can even connect one of the
end input/output pins to a sensor, and have that trigger the feeding. You could
end function create a micro:monster that's reliant on rainfall, or on sunlight.

Hint: you can also change how much the action influences the
micro:monster’s hunger. Instead of + 3, why not make it fuller for longer by
changing the value to + 10?

Test, play and show us what you've done

Now that you’ve made your very own micro:monster, click ‘run’ to test it on the simulator and ‘compile’ to
see it working on your micro:bit.

Click ‘export’ to save off your code and send it to us at live.lessons@bbc.co.uk. You could see your
micro:monster featured on our micro:bit Live Lesson in February.




