BlBIC oOe

LIVE et
LESSONS micro:bit

Make your very own micro:monster (advanced)

Step 1: Import the code

Download the hex file from our Live Lessons website by clicking on the micro:monster basic hex file link.

Firstly, select ‘My scripts’ on the top navigation on the micro:bit website (www.microbit.co.uk), and
choose ‘Create code’.

Language < My soripts ® Sonm

o Create Code About Gettrg Started Teachers and Parents Help

pa@a C)micro:bit

GET CREATIVE GET CONNECTED,

GETCODING. £

Choose ‘Import Code’ and upload the hex file that you’ve downloaded from the Live Lessons website.

create code with...

. Block Editor
o
a CK JovaScnpt
Touch Develop
'S Alleanenft

. Import Code

The code for your micro:monster should now appear in your code window.

Hit ‘run’ to see it in action on the simulator, or plug in your micro:bit, hit ‘compile’ and drag your hex file
onto your micro:bit to try out your micro:monster.

Step 2: Understanding the code

script micro:monster advanced
function main ()

 @sad := false
| (Hhunger := 0
' [@fitness := 20
| MHalive := true
| MHtime := 0
' led = set brightness(100)
' basic = show leds(.., 400)
basic — forever do
(Htime := [Htime + 1

How your micro:monster looks at the start

This is where you determine how your micro:monster looks when you first power up.
Here, we've set four variables:

alive this is a variable that calls for a Boolean data type (true or false)
sad this is a variable that calls for a Boolean data type (true or false)
hunger this is a variable that calls for an integer data type (numbers)
fitness this is a variable that calls for an integer data type (numbers)
time this is a variable that calls for an integer data type (numbers)

We've written that the micro:monster is happy when you first start up (so sad: false),
it's not hungry (so hunger: 0) and it's also got an average fitness level (so fitness: 20).

We've also said that the micro:monster is brand new - so it's been alive for zero
amount of time (time: 0). Of course, your micro:monster is also dlive.

Because it's not sad, the micro:monster has a smiley face, so we've drawn a smiley
face using the LEDs.

basic — forever do
[Htime := [Mtime + 1
if Btime > 30 then
i MHhunger := (Shunger + 1
: (Hfitness := [Hfitness - 1
i ‘basic = pause(3000)
- if Bhunger > 3 then
! '[Msad := true
| Ibasic— show leds(::., 400)
- else
' basic = show leds(..., 400)
end if
else add code here end if

if Hhunger > (25 + [Hfitness) and [(Salive

i e simlia b emlamii cmada S AANN AaNNNNN

What happens as time passes?

This is where you program what happens to your micro:monster.

Here, we've introduced a loop that goes on forever. This means that whatever happens
within that loop, it keeps happening as long as the micro:monster is powered up.

When the loop starts, we set the variable time to time + 1, which means the amount of
time that the micro:monster has been alive has gone up by a value of one.

We then introduce a conditional statement. Here we say that IF the variable time is
over 30, then the micro:monster’'s hunger goes up by 1, and its fitness goes down by 1.
We then add a pause of 3000 milliseconds to extend the time of the loop, so the monster
doesn’t get hungry too quickly!

Another conditional statement is then introduced: IF the variable hunger is more than or
equals to 3, then the monster becomes sad (sad: true), and the monster’s happy face
becomes a sad face. Otherwise (ELSE), the monster is still happy, and a happy face still
shows.

if Bhunger > (25 + [Sfitness) and [Halive then
- music = play note(440, 1000)
| else add code here end if
if Bhunger > (30 + [Sfitness) then
if Halive then
| music — play note(440, 5000)
else add code here end if
[Halive := false
_ basic = show leds(., 400)
. led — fade out(700)
_led— fade in(700)
- basic = show number([Hlifetime, 150)
[else add code here end if
if Balive then
(Y lifetime := input = running time / 1000
| else add code here end if

end
input — on button pressed(A) do

se T 02, an,

Life and death

This is where you program what happens to your micro:monster when you don't take
good care of it.

Here, we've said that if the micro:monster gets hungry and unfit (hunger > (25 + fitness),
you are given a warning tone, at the frequency of 440hz and for 1000ms.

If you micro:monster gets too hungry and too unfit (hunger > (30 + fitness), then it dies
(alive: false). A face displays to show that it's dead, and the LEDs fade out, before
fading back in again to show how long you've managed to keep it alive.

We've also introduced a final IF condition that allows the program to sound a flatline tone
(440hz for 5000ms) before it dies.

The final IF condition in this sequence allows you to see in seconds how long you've
kept your micro:monster alive for. It states that if your micro:monster is alive, then the
monster’s lifetime (another variable) is the program’s running time in seconds.

22 D alivea Al o o

Checking on your micro:monster

This is where you program actions to help you check on the status of your
micro:monster.

Pressing button B allows you to see how hungry your micro:monster is getting, while
pressing button A and B together allows you to check on your micro:monster’s fitness.

end
input = on button pressed(B) do
! basic = show number (8 hunger, 150)
end
input = on button pressed(A+B) do
! basic = show number([Efitness, 150)

end
end function

Step 3: Modifying the code

There are lots of things you can do to adapt your micro:monster and make it your own.

In the Live Lesson, we want you to make your own animation for eating and exercising. Click on these lines
of code in the editor and change which LEDs light up to create your own animations:

input = on button pressed(A) do
if Halive then
(Hhunger := (Shunger - 6

else

basic = show string("Your micro:monster has died.", 50)
end if
end

input = on shake do
if Balive then
(Hhunger := (Bhunger + 1
[Hfitness := [Hfitness + 3

basic = show animation (i s i ¥ i s i 55 0 400)
else

basic = show string("Your micro:monster has died.", 50)
end if

end

If you like, you can also alter different parts of the code.

script micro:monster advanced

fifotion mein § So what can you change?

| @sad := false
You can do lots of things to make your micro:monst {Herw S—
| (D hunger := 0 'ou can ings to make your micro:monster your own. Here are some suggestions

' [Mfitness := 20
| Malive := true._

 [Btime := 0 ‘ Change the variables

 led = set brightness(100) \ Instead of your micro:monster being hungry and sad and needing food, why
| basic = show leds(..., 400) not make it tired and needing a nap? Just change the variables hunger and
) - sad to tiredness and sleepy, or anything else you fancy.
basic — forever do
[time := Mtime + 1
if Stime = 30 then
(Hhunger := Bhunger + 1
Hfitness := [Hfitness - 1
basic = pause(3000)

Hint: remember to change them throughout the whole program so they all
match up.

‘ Change how your micro:monster looks and acts

: Instead of the traditional smiley and sad face, you can design how your
if O hungef 2 3 then monster looks when they're happy or sad. You can even design the ‘eating’
\ Hsad := true animation so it reflects the look of your own micro:monster.
| basic = show leds{ v Hint: if you've changed the variables to tiredness and sleepy, you could
else change your monster's sad face lo a sleepy face, and the ‘eating’ animation
. to a 'sleeping’ one.
| basic = show leds(..., 40!
end if

else add code here end if

if Bhunger > (25 + [Sfitness) and [Malive then
music - play note(440, 1000)

else add code here end if

if Shunger > (30 + [Sfitness) ' Change when your micro:monster dies

if Balive then
) e > You can change how quickly your micro:monster dies by adjusting this
' music — play note(440, Su. condition. Simply make the number larger to make it live longer, or smaller to

else add code here end if make it a shorter, more exciting game.

Halive := false

led - fade out(700)

led - fade in(700)

basic = show number([H lifetime, 150)
else add code here end if
if Halive then

[lifetime := input = running time / 1000
else add code here end if

end
input = on button pressed(A) do
if Balive then
< Change how your actions help your micro:monster
[Hhunger := (Shunger
i i 3 > 1 You can change what actions you do to reduce or increase your
besic~ show animation{ ' micro:menster’s hunger. Instead of pressing button A, you could trigger
else) feeding by shaking it, pressing another button or pressing both buttons at the
basic = show string("Your micr ~ same time.
end if

For a more sophisticated micro:monster, you can even connect one of the
end input/output pins to a sensor, and have that trigger the feeding. You could
input = on shake do create a micro:monster that's reliant on rainfall, or on sunlight.

if Malive then Hint: you can also change how much the action influences the
micro:monster’s hunger. Instead of + 6, why not make it fuller for longer by
M@ hunger := Mhunger + 1 changing the value to + 10?

[Yfitness := [Bfitness + 3

Test, play and show us what you've done

Now that you’ve made your very own micro:monster, click ‘run’ to test it on the simulator and ‘compile’ to
see it working on your micro:bit.

Click ‘export’ to save off your code and send it to us at live.lessons@bbc.co.uk. You could see your
micro:monster featured on our micro:bit Live Lesson in February.

